
Efficient Verification of ReLU-based Neural Networks via Dependency Analysis

Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, Ruth Misener
Department of Computing, Imperial College London, UK

{e.botoeva, p.kouvaros, j.kronqvist, a.lomuscio, r.misener}@imperial.ac.uk

Abstract

We introduce an efficient method for the verification of
ReLU-based feed-forward neural networks. We derive an
automated procedure that exploits dependency relations be-
tween the ReLU nodes, thereby pruning the search tree that
needs to be considered by MILP-based formulations of the
verification problem. We augment the resulting algorithm
with methods for input domain splitting and symbolic in-
terval propagation. We present Venus, the resulting verifica-
tion toolkit, and evaluate it on the ACAS collision avoidance
networks and models trained on the MNIST and CIFAR-10
datasets. The experimental results obtained indicate consid-
erable gains over the present state-of-the-art tools.

1 Introduction
Artificial Intelligence (AI) methods are increasingly used in
safety critical applications including, but not limited to, au-
tonomous vehicles, avionics, and power generation. These
domains typically require a certification aimed at establish-
ing the safety of the application to be deployed.

Formal verification methods commonly used in software
verification cannot address the validation of AI applications
due to the inherently different components. In particular,
AI applications increasingly utilise neural networks in key
parts of their designs, most notably in perception and control
modules. Due to this, the area of formal verification of neural
networks has recently received considerable attention. Sim-
ply put, methods for assessing neural systems can provide
the mathematical underpinning for safely deploying a wide
number of AI applications.

The typical decision problem tackled by verification ap-
proaches is whether a neural network, or a closed-loop sys-
tem in which neural networks are present, can output par-
ticular values, i.e., output reachability. Reachability is often
studied in conjunction with local robustness properties, i.e.,
whether for a given input, e.g., an image, small alterations
of this input can cause output variation, e.g., a different clas-
sification. The present state of the art (Liu et al. 2019) in-
cludes several ways of formulating this problem (see related
work below); however, no method scales to the analysis of

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the neural networks presently used in industrial strength ap-
plications, including autonomous vehicles. Therefore, it re-
mains of considerable importance to develop more scalable
approaches. This is the aim of the present contribution.

This paper introduces a novel, MILP-based approach to
verifying feed-forward ReLU-based neural networks. Rec-
tified Linear Units (ReLUs) are the most commonly-used
activation functions in vision and are the typical object of
study in the above cited literature. This manuscript devel-
ops the concept of dependency. Two nodes in a neural net-
work are in a dependency relation if there is a strict connec-
tion between their active or inactive state during the overall
network computation. As we show, dependency can be ex-
ploited to improve the performance of a MILP formulation.
Crucially, and differently from the related state-of-the-art,
our dependency analysis is not aimed at reducing the number
of variables in the verification problem, but rather at reduc-
ing the search space during a branch-and-bound approach to
generate satisfiable assignments. This paper (i) develops ef-
fective methods exploiting these dependencies and (ii) inte-
grates the methods into a larger implementation incorporat-
ing scalability-improving methods such as domain splitting.
The resulting implementation generates speed-ups of at least
one order of magnitude against competing methods.

The rest of the paper is organised as follows. After dis-
cussing related work below, Section 2 reports key concepts
on neural networks and related verification approaches. Sec-
tion 3 first presents the theoretical contribution on depen-
dency analysis and then gives a dependencies-based verifi-
cation algorithm. Section 4 presents a toolkit exploiting de-
pendency analysis. Section 5 reports the experimental results
obtained on the MNIST, CIFAR-10, and ACAS datasets and
compares these against state-of-the-art implementations.

Related Work. Verification methods for neural networks
can be partitioned into complete and incomplete ones. Com-
plete methods can in principle return a definite answer as
to whether the property in question is satisfied. Differently,
incomplete methods may erroneously conclude that the net-
work is not robust when it actually is or a certain output is
reachable when it is actually not.

Incomplete methods include approaches based on dual-
ity (Dvijotham et al. 2018), abstract interpretation (Gehr et

al. 2018), symbolic interval analysis (Zhang et al. 2018;
Wang et al. 2018a) and semidefinite relaxations (Raghu-
nathan, Steinhardt, and Liang 2018; Fazlyab, Morari, and
Pappas 2019). While the techniques differ, they all overes-
timate the output of the network from a given input region
in an attempt to draw a conclusion from this. While incom-
plete methods may be very efficient in some cases, they are
not comparable to the ones here presented as they may not
answer the verification problem due to false negatives.

Complete approaches can be divided into 3 main groups:
(i) MILP-based (Bastani et al. 2016; Lomuscio and Mag-
anti 2017; Cheng, Nührenberg, and Ruess 2017; Fischetti
and Jo 2018; Bunel et al. 2018; Tjeng, Xiao, and Tedrake
2019) techniques that formulate the verification problem at
hand as a mixed integer linear program; (ii) SMT-based
(Ehlers 2017; Katz et al. 2017; 2019) techniques that en-
code the verification problem as the satisfiability modulo
theory problem; (iii) techniques that use a combination of
overestimation and refinement techniques to get a definite
answer (Wang et al. 2018b; 2018a).

Closely related to this paper is some of the recent work,
which has focused on conquering scalability and increas-
ing precision in incomplete approaches. These include:
(i) computing tight bounds using symbolic interval analy-
sis (Wang et al. 2018a; Zhang et al. 2018); (ii) input split-
ting (Wang et al. 2018b; Katz et al. 2019; Rubies-Royo et al.
2019); (iii) optimised MILP formulations (Bunel et al. 2018;
Tjeng, Xiao, and Tedrake 2019; Anderson et al. 2019). The
work here presented uses MILP formulations to the verifica-
tion problem combined with input splitting and symbolic in-
terval analysis methods. However, differently from the work
cited above, it uses novel heuristics based on dependency
analysis to guide the search for feasible solutions.

2 Background
This section summarises and fixes the notation on some of
the key notions used later in the paper.

Feed-forward neural networks. A feed-forward neural
network (FFNN) is a directed acyclic graph whose nodes
are structured in layers. The first layer is the input layer,
also referred to as layer 0, the last layer is the output layer,
also referred to as layer k, and every layer in-between is a
hidden layer, also referred to as layer i, for 1 ≤ i < k.
Every node other than an input node is connected to every
node in the preceding layer. Each edge is associated with
a weight, which is learned during the training phase. Given
an input vector, the network computes a function by propa-
gating the input through the network, where, at each step,
a node’s output results from applying an activation func-
tion to the pre-activation of the node, which is the weighted
sum of the outputs of the nodes from the previous layer.
Here, we only consider the ReLU activation function defined
by ReLU(x) , max(x, 0) for x ∈ R.

We denote by si the number of nodes in layer i. We
use ni,q to refer to the q-th node of layer i. Given an input x
to the network, we write x̂i,q (xi,q , respectively) for the pre-
activation (output, respectively) of the node ni,q . For a set
of inputs over a bounded domain, every node is associated

with lower and upper pre-activation and activation bounds.
These can be derived in a number of ways discussed below.
We write l̂i,q and ûi,q (li,q and ui,q , respectively) for the pre-
activation’s (output’s, respectively) lower and upper bounds.
Similarly, x̂i and xi refer to the vector of pre-activations and
outputs of layer i over domains [̂li, ûi] and [li,ui], respec-
tively, where x0 = x, and l0 and u0 are the input lower
and upper bounds. We write Wi and bi to refer to the weight
matrix and bias vector of layer i, i ≥ 1, respectively.

Given an input x and for i ≥ 1, the output xi of layer i is
computed from xi−1 by applying the function fi : Rsi−1 →
Rsi , which is defined as fi(xi−1) , ReLU(Wixi−1 + bi) =
ReLU(x̂i), where the ReLU function is applied element-
wise. Given the above, a neural network of k + 1 layers, is
defined as a function f : Rs0 → Rsk , corresponding to the
composition of the functions fi computed by each layer i,
i.e., f(x) , fk(. . . f1(x) . . .).

A ReLU node ni,q can be in one of two states. It is in the
strictly active state (or, is strictly active), denoted st(ni,q) =

> if l̂i,q ≥ 0. It is in the strictly inactive state (or, is strictly
inactive), denoted st(ni,q) = ⊥, if ûi,q ≤ 0. A stable node
is a node that is either strictly active or strictly inactive. Oth-
erwise, the node is said to be unstable, denoted st(ni,q) =?.

Verification problem. Given a network f : Rs0 → Rsk
and a specification (X0,Xk) ⊆ Rs0 × Rsk , the verification
problem determines whether ∀x0 ∈ X0 : xk ∈ Xk.

To enable the MILP representation, we hereafter as-
sume that X0 is an intersection of finite sets of polyhe-
dra. The local robustness and reachability problems are in-
stantiations of the verification problem. The local robust-
ness problem establishes if the network’s output is un-
affected by small perturbations of a given input x′. In
the case of image classifiers, local robustness checks if
all images within a norm-ball of x′ are classified equiva-
lently. The problem can be represented by setting X0 =
{x ∈ Rs0 | ‖x− x′‖p ≤ ε}, for some ε ≥ 0 and norm p,
and Xk = {xk ∈ Rsk | ∀i 6= c : (xk)i < (xk)c}, where
(xk)j is the j-th component of xk and c is the class of x′.

The reachability problem establishes if there exists an ad-
missible input in a given set I for which the network com-
putes a given output y. The reachability problem is not di-
rectly expressible as the verification problem defined above
as it includes an existential quantification over the inputs.
The dual problem can, however, be represented by taking
X0 = I and Xk = Rsk \ {y}. Therefore, the answer to the
reachability problem is the complement of the answer to the
verification problem encoded as the dual above.

MILP formulation. The verification problem admits a
precise representation as a Mixed Integer Linear Program
(MILP) by means of the “big-M” encoding (Akintunde et
al. 2018). Specifically, the corresponding MILP program is
feasible iff the answer to the verification problem is no. As-
suming the pre-activation bounds of the nodes have already
been calculated (see below), the MILP encoding of a node
ni,q depends on its state. If the node is strictly active, then
it can be encoded by xi,q = x̂i,q . If the node is strictly in-
active, then it can be encoded by xi,q = 0. Otherwise, the

encoding of the node is given by:

xi,q ≥ 0, xi,q ≥ x̂i,q ,
xi,q ≤ ûi,q · δi,q , xi,q ≤ x̂i,q − l̂i,q · (1− δi,q),

where δi,q is a binary variable such that δi,q = 0 iff xi,q = 0
and δi,q = 1 iff xi,j = x̂i,q .

For an MILP program comprising a set ∆ of binary vari-
ables, a (partial) configuration is a (partial) function h :
∆ → {0, 1} that assigns to each variable (some of the vari-
ables) a value from {0, 1}. The set of all possible partial con-
figurations is said to be the program’s configuration space.

A leading approach for solving MILP programs is the
branch-and-bound method. In branch-and-bound, each inte-
grality constraint δi,j ∈ {0, 1} is relaxed to a linear con-
straint δi,j ∈ [0, 1], thereby defining a linear program which
can be solved in polynomial-time (Karmarkar 1984). Inte-
grality is iteratively enforced by dividing the search domain
into sub-regions excluding fractional solutions. In the con-
text of neural networks, the efficacy of branch-and-bound
depends on (i) the number of binary variables, i.e., the num-
ber of unstable nodes, and (ii) the tightness of the linear re-
laxations, i.e., the tightness of the pre-activation bounds.

Calculating bounds. Interval arithmetic derives pre-
activation bounds by propagating the interval of the input
domain through the network. However, the resulting bounds
are often over-approximated as the method neglects depen-
dencies between the input nodes, and propagating the over-
approximated bounds leads to larger over-approximations
following each layer. To enable tighter approximations,
rather than propagating concrete intervals, approaches based
on symbolic interval analysis (Wang et al. 2018a) define
linear equations for the lower and upper bounds which are
built from variables expressing the inputs of the network. To
tackle the non-linearity of the ReLU function, propagating
the equations involves their linear relaxation (Wang et al.
2018a). Lastly, even tighter bounds can be obtained by split-
ting the input domains into several sub-domains and solving
the verification problem for each sub-domain (Wang et al.
2018b; 2018a; Katz et al. 2019).

3 Dependency Analysis
As discussed in the previous section, a major impediment to
the scalable verification of ReLU-based FFNNs is the con-
figuration space generated by the piecewise linearity of the
ReLU nodes. Several approaches have been put forward for
reducing the number of non-linearities that need to be con-
sidered for solving the verification problem. In particular,
techniques that split the input domain have been shown ef-
fective in stabilising the ReLU nodes, thereby generating
easier verification problems whose solutions can be com-
bined to decide the original problem in a more efficient man-
ner. Still, since the number of splits that need to be carried
out grows exponentially in the number of splits, networks
with high input dimensionality remain hard to tackle. To
overcome this, we introduce a technique that exploits what
we define below as the network’s dependency relation to re-
duce the configuration space that needs to be considered in
solving a verification problem. Informally, the network’s de-
pendency relation can be used to stabilise a ReLU node on

x0,1[0, 1]

x0,2[−1, 1]

x1,1

[−1, 2]

x1,2

[−2, 1]

x2,1

[−1, 2]

x2,2

[0, 3]

1

−1

1

1

1

1

−1

1

n1,2

n2,1 n2,1

⊥ >

>⊥ >

Figure 1: Left: Feedforward neural network exhibiting the
dependency “if n1 ,2 is inactive, then n2 ,1 is inactive”.
Right: Depiction of the configuration space reduction in-
duced by the dependency.

the basis of an assumed stable state of another node. For-
mally it is defined as follows.

Definition 1 (Dependency relation). Given a neural net-
work f that comprises a set of unstable nodes U , the de-
pendency relation for U , Df ⊆ U × U is the set of all pairs
(ni,q ,nj ,r) such that st(ni,q) 6=? =⇒ st(nj ,r) 6=?.

A node nj ,r depends on a node ni,q if whenever ni,q is
either strictly active or inactive, then nj ,r has to be either
strictly active or inactive. It follows that the configuration
space generated by a branch-and-bound method can be re-
duced by stabilising nj ,r whenever ni,q becomes stable. In
particular, for a network with n unstable nodes, there are
2n−2 configurations that violate a given dependency; there-
fore, each dependency provides a means to reduce the con-
figuration space by a factor of 1/4.

Example 1. Consider the network shown in the left part of
Figure 1. In the figure each interval next to a node denotes
the pre-activation bounds of the node. Note that nodes n1 ,2
and n2 ,1 are unstable. Assume that a branch-and-bound
method branches on node n1 ,2 , thereby splitting the opti-
misation problem into two sub-problems: one where n1 ,2 is
strictly active and one where n1 ,2 is strictly inactive. Con-
sider the latter sub-problem. We have that l1,2 = 0 and
u1,2 = 0. Therefore, l̂2,1 = 1 · 0 + −1 · 0 = 0 and
û2,1 = 1 · 2 − 1 · 0 = 2. Hence, n2 ,1 is strictly active, and
consequently, (ni,j ,nq,r) ∈ Df . The right part of Figure 1
depicts the configuration space satisfying said dependency.

We now proceed to derive a procedure for computing a
network’s dependency relations. To ease the presentation,
we express dependency relations as unions of four disjoint
sets Df =

⋃
z,z′∈{>,⊥}D

z,z′

f , where each Dz,z
′

f comprises
dependencies pertaining to the ReLU states z and z′, i.e.,
Dz,z

′

f , {(ni,q ,nj ,r) | st(ni,q) = z =⇒ st(nj ,r) = z ′}.
Also, we distinguish between inter- and intra-layer depen-
dencies, which require a different algorithmic treatment. We
begin by studying dependencies in the same layer.

Intra-layer dependencies. A dependency (ni,q ,nj ,r) is
said to be an intra-layer dependency if i = j. To compute the
dependency relation, given a pair of nodes, we compute the
lower and upper bounds of a node under the assumption that
the pre-activation of the other is zero, and use the bounds to
determine the dependencies.

xi,q

xi,r

ûi,q,r=0

l̂i,q,r=0 ûi,r,q=0

l̂i,r,q=0

xi,q

xi,r

l̂i,q,r=0

ûi,q,r=0
l̂i,r,q=0

ûi,r,q=0

xi,q

xi,r

ûi,q,r=0

l̂i,q,r=0
l̂i,r,q=0

ûi,r,q=0

xi,q

xi,r

l̂i,q,r=0

ûi,q,r=0ûi,r,q=0

l̂i,r,q=0

Figure 2: The types of intra-layer dependencies. Top-left:
if ni,q is active, then ni,r is inactive. Top-right: if ni,q is
inactive, then ni,r is active. Bottom-left: if ni,q is active,
then ni,r is active. Bottom-right: If ni,q is inactive, then
ni,r is inactive.

Formally, for a pair of nodes ni,q , ni,r , we define x̂i,q,r=0

as the set of pre-activations of ni,q when the pre-activation
of ni,r is zero:

x̂i,q,r=0 , {(Wi)q · xi−1 + (bi)q | (Wi)rxi−1 + (bi)r = 0} .
Geometrically, this can be viewed as the intersection of
the plane generated by the pre-activations of ni,q and ni,r
with x̂i,r = 0. Note that said intersection always exists as
both ni,q and ni,r are unstable; therefore, there is an input
for which their pre-activations equal zero. On the basis of
the lower and upper bounds of x̂i,q,r=0 and x̂i,r,q=0, which
can be computed as standard using interval arithmetic, the
following lemma identifies the intra-layer dependencies (see
Figure 2).
Lemma 1. For a neural network f and a pair of unstable
nodes (ni,q , ni,r), the following hold:

1. (ni,q ,ni,r) ∈ D>,⊥f iff ûi,q,r=0 < 0 and ûi,r,q=0 < 0.

2. (ni,q ,ni,r) ∈ D⊥,>f iff l̂i,q,r=0 > 0 and l̂i,r,q=0 > 0.

3. (ni,q ,ni,r) ∈ D>,>f iff ûi,q,r=0 < 0 and l̂i,r,q=0 > 0.

4. (ni,q ,ni,r) ∈ D⊥,⊥f iff l̂i,q,r=0 > 0 and ûi,r,q=0 < 0.

Lemma 1 gives a procedure for identifying intra-layer de-
pendencies by computing the right hand side of each of the
above clauses for every pair of unstable nodes in a layer.
Dependencies between layers require a different treatment.

Consecutive-layer and inter-layer dependencies. A de-
pendency (ni,q ,nj ,r) is said to be an inter-layer dependency
if j 6= i. A special case of inter-layer dependencies are those
defined by j = i+1, which we call consecutive-layer depen-
dencies. As we show below the latter are sufficient to obtain
the smallest possible configuration space.
Lemma 2. Let S be the subset of a given network’s config-
uration space that satisfies all consecutive-layer dependen-
cies. Then, every configuration in S satisfies any inter-layer
dependency (ni,q ,nj ,r) ∈ Dz ,z ′

f with j − i > 1.

It follows that consecutive-layer dependencies are suffi-
cient to determine the minimum configuration space. To ob-
tain a procedure for calculating consecutive-layer dependen-
cies we introduce the result below.
Lemma 3. For a neural network f and a pair of unstable
nodes ni,q ,nj ,r , for j = i+ 1, the following hold:

1. (ni,q ,nj ,r) ∈ D⊥,⊥f ⇔ ûj ,r − (Wj)r ,q · ui,q ≤ 0 .

2. (ni,q ,nj ,r) ∈ D⊥,>f ⇔ l̂j ,r − (Wj)r ,q · ui,q ≥ 0 .

3. D>,⊥f = ∅
4. D>,>f = ∅

Lemma 3 gives a procedure for identifying consecutive-
layer dependencies by checking the right hand side of
clauses (1) and (2) for every pair of unstable nodes in con-
secutive layers.

Dependency analyser. Given the above, we now put for-
ward a procedure using the identification of dependencies to
reduce the configuration space. The procedure runs in con-
junction with a MILP solver, where it builds a new constraint
for each dependency which it adds to the program being
analysed by the solver. This is performed at runtime during
the branch-and-bound procedure, as the computation of the
dependencies is consistent with the current, partial configu-
ration of ReLU nodes being considered by the MILP solver.
This allows for the identification of dependencies whilst sev-
eral nodes have already been stabilised, as opposed to of-
fline methods where most nodes would typically be unsta-
ble, thereby hindering the existence of dependencies, as it is
rarer for a node to cause a state change on another.

Consider a partial configuration h being considered by the
MILP solver. To determine its validity, the solver either ex-
tends it to a complete one that satisfies all constraints or to
a partial one that violates at least one of the constraints. The
dependency analysis procedure put forward here reduces the
number of extensions of h that need to be evaluated. Algo-
rithm 1 enumerates the steps of the procedure. First, it sta-
bilises the ReLU nodes as per h and re-computes the bounds
for the ones being unstable under h. On the basis of the
bounds, it determines the dependencies as per Lemmas 3
and 1. These are then expressed as constraints, referred to as
dependency cuts, which are added at runtime to the MILP
program. The dependency cuts are defined as follows.
Definition 2 (Dependency cuts). For a partial configuration
h : ∆ → [0, 1], the associated dependency cut cutd,h of a
dependency d , (ni,q ,nj ,r) ∈ Dz ,z ′

f is a MILP constraint
defined as follows:

cutd,h , γj,r(z
′) ≤

∑
h(δ)=0

δ +
∑
h(δ)=1

1− δ + γi,q(z),

where γi,q(z) equals δi,q if z = ⊥ and 1− δi,q if z = >.
A dependency cut derived from a configuration h is sat-

isfied by an extension of h iff the extended configuration
satisfies the corresponding dependency; it follows that each
dependency cut removes from the search space all configu-
rations extending h that do not satisfy the dependency. Addi-
tionally, for any configuration that does not extend h, the cut

Algorithm 1 The dependency analysis procedure.
1: procedure DEPENDENCY ANALYSIS(milp, h)
2: Input: MILP milp, partial configuration h.
3: for each h(δi,q) = 0 do
4: li,q ← 0, ui,q ← 0

5: Compute remaining bounds (Section 2).
6: Compute Df (Lemmas 3 and 1).
7: Add

{
cutd,h | d ∈ Df

}
to milp (Definition 2)

Algorithm 2 The verification procedure.
1: procedure VERIFY(N , (X0,Xk))
2: Input: network N , specification (X0,Xk)
3: Output: YES/NO
4: sub-problems← split(N, (X0,Xk))
5: result← YES
6: for P in sub-problems do
7: milp← encode(P)
8: sub-result← milp solver(milp)
9: if sub-result is feasible then

10: result← NO
11: break
12: return result

is trivially satisfied, thereby not altering the search space for
those configurations. The former is shown by clause (1) and
the latter is proved by clause (2) of the following theorem.

Theorem 1. Let h be a partial configuration and d ∈ Dz,z
′

f

a dependency. Then, the following hold:
1. For every h′ with h ⊆ h′, h′ |= cutd,h iff h′ |= d.
2. For every h′ with h * h′, h′ |= cutd,h .

The above concludes the description of the dependency
analysis procedure. The procedure runs in time O(k · s2),
where k is the number of layers and s is the layers’ maximal
size. Clearly running this procedure has a cost. In the next
section we will experimentally evaluate how frequent these
calls should be. Also, note that since our dependency frame-
work is a function of the bounds of the ReLU nodes, the
procedure can further be optimised by using domain split-
ting and symbolic interval propagation methods, since these
lead to tighter intervals for the ReLU nodes.

In the next section we show that all these factors com-
bined improve the scalability of formal verification of neural
networks over the state-of-the-art.

4 The Venus Verification Tool
In this section we introduce Venus (Venus 2019), a verifica-
tion toolkit that implements the dependency analysis pro-
cedure and augments it with symbolic interval arithmetic
and domain splitting techniques. While methods on domain
splitting divide the input domain into sub-domains, thereby
tightening the nodes’ bound intervals, methods on symbolic
interval arithmetic enable the efficient and tight approxima-
tion of the latter; therefore, by Lemmas 1 and 3, both meth-
ods promote the existence of dependencies.

The verification procedure upon which Venus is based
is outlined in Algorithm 2. The procedure follows a divide-
and-conquer approach whereby it recursively splits the input

Algorithm 3 The splitting procedure.
1: procedure SPLIT(P)
2: Input: verification problem P = (N, (X0,Xk))
3: Output: a set of verification sub-problems.
4: d← 1 . Splitting depth
5: tosplit← [(d, X0)]
6: sub-problems← []
7: while tosplit not empty do
8: d, R← pop top element of tosplit
9: R1, R2← best split(R)

10: if worth split(R, R1, R2, d) then
11: add (d+ 1, R1), (d+ 1, R2) to tosplit
12: else
13: add (N, (R,Xk)) to sub-problems
14: return sub-problems

domain until certain heuristic criteria are met and solves the
verification sub-problems associated with each sub-domain.
Each sub-problem is encoded as a MILP program. These can
be analysed in parallel. A MILP program is feasible iff the
answer to its associated verification problem is “no”. By the
definition of the verification problem (Section 2), the answer
to the original problem is “no” iff there is at least one sub-
problem whose answer is “no”. So, as soon as one of the sub-
problems is found to be feasible, the procedure terminates
without analysing the remaining MILP programs.

Venus uses the “big-M” encoding for the verification
problems, and strengthens the linear relaxations by adding
dependency cuts and “ideal cuts” (Anderson et al. 2019) to
the MILP programs. The cuts are added at runtime through
solver callbacks. Although the cuts strengthen the relax-
ation, they add complexity to the sub-problems within the
solver. Therefore, the addition of a large number of cuts can
slow down the solver. Following this, cuts are only added in
a fraction of all solver callbacks.

Splitting procedure. The splitting procedure is outlined by
Algorithm 3. The procedure recursively splits the input do-
main by selecting at each step one of the input dimensions
and dividing its range in half.

The dimension is heuristically selected on the basis of
what we call the stability-ratio, the ratio of stable to to-
tal number of nodes for a given network and input domain
(Line 9). In particular, for each input dimension, we bisect
the input domain along the dimension, compute the stability-
ratio for each of the two resulting sub-domains and record
the average stability-ratio. Then, the dimension along which
to split is selected as the one that maximises the recorded
averages, or, equivalently, as the one that achieves (on aver-
age) the greatest reduction of the configuration space of the
induced sub-problems.

Clearly, the number of splits that need to be performed in
order to obtain (significantly) simpler sub-problems grows
in the number of dimensions. As a result, since the number
of sub-problems grows exponentially in the number of splits,
the number of sub-problems that need to considered grows
exponentially in the number of dimensions. So, whereas ver-
ification problems for networks with low input dimensional-
ity can effectively be divided into a number of small sub-

problems that are easier to solve, problems for networks
with high input dimensionality render such partitions in-
tractable. As reported in the next section, a key advantage
of Venus over related tools lies in its ability to solve both
low and high input dimensionalities. While domain split-
ting is very effective for low input dimensionalities, MILP
solvers in conjunction with dependency analysers are very
powerful for high input dimensionalities. Venus combines
the two approaches by considering a heuristic criterion that
terminates splitting and signals the employment of an MILP
solver (Line 10). The criterion expresses an estimation of the
difficulty of the verification problem before splitting versus
its difficulty after splitting.

The estimation of the difficulty of a problem p at splitting
depth d that we consider is defined by

score(p, d) =
stability ratio(p)− stability ratio(P)

d
1
m

,

where P is the original verification problem and m is the
splitting parameter. The larger the score the less difficult
the verification problem is estimated to be. The score re-
wards the improvement of the stability ratio with respect
to the original problem and penalises large splitting depths.
The splitting parameter controls the degree of “discount” to
the splitting depth penalty, where higher values of m sig-
nify larger discount. So, following the above discussion,
in the case of problems over networks with low input di-
mensionality, the splitting parameter should be kept high
so as to favour splitting. Differently, for problems over net-
works with high input dimensionality, the splitting parame-
ter should be kept low in order to discourage splitting.

Given a problem p at splitting depth d, and the sub-
problems p1 and p2 resulting from splitting the chosen di-
mension of the input domain of p, the splitting is carried
out only if the score of (p, d) is less than the average of the
scores of (p1, d+ 1) and (p2, d + 1). In cases where exces-
sive splitting is still observed, a cut-off stability-ratio is used
above which the splitting process terminates independently
of the aforementioned scores.
Implementation. The architecture of Venus is shown in
Figure 3. The toolkit comprises the following components:
(i) the Splitter performing domain splitting and adding the
derived sub-problems to the jobs queue; and (ii) the Worker
reading sub-problems from the jobs queue, solving them by
calling an MILP-solver and dependency analyser ensemble,
and recording the verification results to the results queue.
Venus aggregates the results from the workers and reports
the combined verification result as per Algorithm 2. Both the
Splitter and Worker follow a parallelisation scheme whereby
several splitters and workers carry out the domain splitting
and the MILP analysis in parallel. Venus is implemented in
Python 3.7 and relies on Gurobi 8.1 for the MILP backend.

5 Experimental Results and Evaluation
In this section we evaluate Venus on a number of widely
used benchmarks and compare it against the state-of-the-art
neural-network verification engines.

For the comparisons we restrict our attention to complete
methods; while these are often less scalable than incomplete

VENUS

SplitterSplitter
WorkerWorkerWorker

MILP
solver

ag
g

re
g

at
io

n

Dependency
analyser

input
problem

jo
b

s
q

u
eu

e

MILP encoding answer

results

verification
result

Figure 3: The architecture of Venus.

ones, they provide full guarantees on the correctness of their
outputs, which is a key objective here. At present, the lead-
ing complete verification tools are Marabou (Katz et al.
2019) and Neurify (Wang et al. 2018a). To assess the im-
provement of Venus over plain MILP-based verification, we
additionally compare Venus against NSVerify (Akintunde
et al. 2018). We used the most commonly used benchmarks
in the context of FFNNs verification:
ACAS Xu (Julian et al. 2016) comprises 45 ReLU-based
FFNNs, which were developed as part of an airborne col-
lision avoidance system to advise horizontal steering de-
cisions for unmanned aircrafts. We considered the specifi-
cations reported in (Katz et al. 2017). Each was tested on
all 45 networks, thereby giving rise (for a total of 10 speci-
fications) to 172 verification problems. For the experiments,
Venus was run with 2 splitters, 4 workers, the stability-
ratio cutoff set to 0.7, the depth discount set to 20 and with
the dependency analyser turned off; Neurify was run with
MAX THREAD set to 2; Marabou was run with the parame-
ters reported in (Katz et al. 2019).
MNIST (LeCun, Cortes, and Burges 1998) is a dataset com-
prising images of hand-written digits 0-9, each formatted as
a 28x28x1-pixel grayscale image. We used MNIST to train
a FFNN with 2 hidden layers, each comprising 512 neurons.
We verified the network against local robustness for a pertur-
bation radius of 0.05 on 100 randomly selected images. For
the experiments, we ran Venus with 2 splitters, 2 workers,
the stability-ratio set to 0.4, the depth discount set to 4, and
the dependency analyser turned on; Neurify was run with
MAX THREAD set to 1; Marabou was run with the parame-
ters reported in (Katz et al. 2019).
CIFAR-10 (Krizhevsky, Nair, and Hinton 2014) is a dataset
comprising images of objects from 10 different classes (air-
planes, cars, birds, cats, etc.). Each image is formatted as a
32x32x3-pixel colour image. We used CIFAR-10 to train a
FFNN with 3 hidden layers, the first comprising 1024 neu-
rons, and the second and third comprising 512 neurons. We
verified the network against local robustness for a perturba-
tion radius of 0.01 on 100 randomly selected images. We ran
all tools with the same parameters as for MNIST.

All experiments were carried out on an Intel Core
i7-7700K (4 cores) equipped with 16GB RAM, running
Ubuntu 18.04. Each verification query had a local timeout
of 1 hour. The sum of verification queries associated with
each benchmark had a global timeout of 24 hours. Table 1
reports the experimental results. For each of the tools and

MNIST (100 verification queries) CIFAR-10 (100 verification queries) ACAS XU (172 verification queries)
ns tall tsolved avs

tall
tVenus
all

ns tall tsolved avs
tall

tVenus
all

ns tall tsolved avs
tall

tVenus
all

Venus 100 5,953.46 573.38 9.10 – 100 857.11 560.04 7.36 – 170 19,642.57 5,527.76 36.36 –
Marabou 0 86,400.00 – – 14.51 0 86,400.00 – – 100.80 156 140,916.96 75,747.78 498.3 7.17

Neurify 65 126,007.24 7.00 0.11 21.17 76 87,178.46 778.46 10.24 101.71 167 23,628.75 2,555.38 16.81 1.2
NSVerify 95 26,906.81 2,515.15 39.9 4.52 100 6,898.64 3,460.41 45.53 8.04 6 86,400.00 – – 30.77

Table 1: Experimental results obtained when running Venus, Marabou, Neurify and NSVerify.

benchmarks, the table gives the number ns of verification
queries that were solved, the overall time tall taken for all
queries, the overall time tsolved and the average time avs
taken for the queries that three best performing tools were
able to solve, and the ratio between overall time taken tall
by a tool over that of Venus, tVenus

all .
The results obtained on MNIST show that Venus was the

most performing of the toolkits, both in terms of the over-
all verification time and the number of verification queries
solved. Neurify was not able to analyse 35 of the queries
because of excessive memory consumption. For these cases,
we considered Neurify as having timed out. Marabou did
not solve any of the queries under local and global time-
outs. NSVerify performed better than both Neurify and
Marabou. Venus was found 4.52 times faster than NSVer-
ify and 21 times faster than Neurify. For CIFAR-10 the dif-
ference between Venus and the other tools was greater, sug-
gesting that the higher the dimensionality and complexity of
the model, the bigger the difference.

Venus’s performance was also found superior on
ACAS XU, both in terms of the overall verification time and
the number of queries solved. Neurify was the fastest tool
w.r.t. the number of queries that all the tools could solve.
Marabou solved a comparable number of queries to Venus
and Neurify but was slower than both of them. NSVerify
solved only 6 queries within the local and global timeouts.

Figure 4 gives a graphical representation of the total num-
ber of verification queries that each tool could verify as a
function of time. In summary, Venus solved most verifica-
tion instances after approx. 15 secs. Also, to the best of our
knowledge, Venus is the only tool that can seemingly anal-
yse both low-dimensional and high-dimensional networks,
outperforming the state-of-the-art tools for each class, of-
ten by more than one order of magnitude. The only aspect
we found Venus to be less performing was counterexample
generation where Neurify was the fastest tool.

The experiments also suggest that the verification of
networks with low input-dimensionality is particularly
amenable to domain splitting, as domain splitting techniques
act as effective configuration-space minimisers. As a result,
branch-and-bound methods that combine domain splitting
are advantageous over ones that do not, as indicated by the
outperformance of Venus over NSVerify on ACAS.

Differently, for high-dimensional input domains, the ex-
periments suggest that domain splitting methods do not sig-
nificantly reduce the configuration space, as indicated by the
degraded performance of Neurify and Marabou on MNIST
and CIFAR-10. In contrast, techniques that directly target

Ablation test ns avs tall tsolved

Big-M formulation 98 38.15 13,555.49 3,700.62
Splitting 98 42.58 11,409.96 4,129.83

Ideal formulation 100 36.02 6,777.95 3,460.17
Splitting+Ideal 100 36.75 8,277.85 3,565.02

Inter Deps 99 30.06 8,561.21 2,916.23
Intra Deps 98 33.03 10,426.82 3,203.54

Inter+Intra Deps 98 25.81 9,729.07 2,503.41
All methods enabled 100 26.52 5,953.46 2,572.90

Table 2: Ablation experiments for MNIST. The average is
calculated for the images that are verified in all cases. Simi-
larly, tsolved is calculated for the images verified in all cases.

100 101 102 103
0

100

200

300

370

Run time (s)

N
u
m
b
er

of
ve
ri
ca
ti
on

q
u
er
ie
s
so
lv
ed Venus

Neurify

Marabou

NSVerify

Figure 4: Number of verification queries that Venus, Neu-
rify, Marabou and NSVerify could solve as a function of
time.

the reduction of the configuration space exhibit high effi-
cacy over high-dimensional inputs, as exemplified by Venus
and NSVerify. Venus is more effective than NSVerify by
considering FFNN-specific configuration-space reductions.
This suggests that MILP solvers are not necessarily best
used as black boxes, but application-specific considerations
can help to improve their effectiveness.

Indeed, the performance gains exhibited by Venus over
NSVerify on MNIST and CIFAR-10 are a consequence of
combining dependency analysis and ideal formulations. This
is evidenced by separately evaluating Venus on MNIST for
different combinations of the techniques that the tool im-
plements. Table 2 reports ablation experiments to analyse
this in detail. The results confirm that domain splitting is not

200−1 5000−1 10000−1
0

10

20

30

Frequency

A
ve
ra
ge

ti
m
e

Figure 5: Average runtime of Venus on MNIST as a func-
tion of callback frequency.

0 0.05 0.1 0.15 0.2

0

50

100
N
u
m
b
er

of
ro
b
u
st
,
n
on

-r
ob

u
st

an
d
ti
m
eo
u
ts

Non-robust
Robust
Timeout

0 0.05 0.1 0.15 0.2

0

4,000

8,000

Radius

T
ot
al

ti
m
e

Figure 6: Total runtime of Venus on MNIST as a function
of perturbation radius.

effective for high dimensional inputs. They also show that
ideal formulations and dependency analysis improve on pure
big-M formulations not only when they are jointly utilised
but also when they are independently employed. In the lat-
ter case, ideal formulations enabled the verification of two
images that could not be verified by dependency analysis,
whereas dependency analysis led to better average and to-
tal time for verifying all images that could be verified in
all cases. In the latter case the results suggest that the com-
bination of dependency analysis and ideal formulations is
preferable in terms of all performance metrics than either
technique considered in isolation.

As discussed in Section 3, running the dependency anal-
ysis procedure has a cost. As a result, the above perfor-
mance gains can only be obtained after determining how
often these calls should be. Figure 5 gives the average run-
time of Venus on 100 MNIST images as a function of the
frequency with which the dependency analysis procedure is
called from a Gurobi callback. High and low frequencies de-
grade the performance of Venus, whereas frequencies in the
range [0.00014−0.00025] balance out the cost of computing
dependencies and the reduction of the configuration space
enabled by their computation.

We conclude this section by studying the performance of

Venus as a function of the perturbation radius for which the
robustness of MNIST is established. Intuitively, small per-
turbation radiuses pertain to easy verification problems on
the one hand, as the bounds for the nodes are tighter, and to
hard problems on the other hand, as the network is more
likely to be robust w.r.t. the corresponding perturbed im-
ages. Similarly, large perturbation radiuses pertain to hard
verification problems on the one hand, as the bounds for the
nodes are looser, and to easy problems on the other hand, as
the network is less likely to be robust w.r.t. the correspond-
ing perturbed images. Figure 6 reports Venus’s total run-
ning time for verifying 100 MNIST images and for pertur-
bation radiuses that range from 0.01 to 0.2. The figure also
shows the number of images for which Venus has timed out
and for which the network was found non-robust and robust.
The figure shows that Venus is consistently efficient for all
perturbation radiuses (with an average verification time per
image of less than 90 seconds). The figure also indicates that
the performance of Venus is mostly degraded for perturba-
tion radiuses within the range [0.05, 0.07]. Notably, these ra-
diuses result in verification problems that do not permit for
sufficiently tight bounds for the nodes whilst not exhibiting
sufficiently adversarial regions.

6 Conclusions
As we argued in the introduction, the deployment of learning
methods based on neural networks in safety critical AI ap-
plications urgently requires verification and validation meth-
ods. A growing area of research is concerned with the devel-
opment of formal verification methods for neural networks
with particular emphasis to ReLU-based deep networks used
in vision and control. While progress in this area has been
rapid, the present state-of-the-art still falls short of the capa-
bilities required to verify industry-strength models. It is un-
likely that this scalability issue will be solved in the immedi-
ate future; but there is a need for novel methods to gradually
conquer larger and larger networks.

In this paper we introduced the concept of dependency
analysis which we developed in the context of a MILP-based
verification method. The method further benefits from input
splitting and symbolic interval propagation. We derived al-
gorithms based on the resulting theory and reported the re-
sults obtained with Venus, a novel tool for the verification
of neural networks. As we demonstrated experimentally on
three different, widely used benchmarks, Venus could solve
more verification queries than the present state-of-the art
tool based on complete methods. Venus is also the fastest
tool to verify the correctness of a network; in some cases
Neurify proved to be faster in finding counterexamples.

In future work we intend to apply Venus to the verifica-
tion of more complex specifications for neural networks in-
cluding transformational robustness (Kouvaros and Lomus-
cio 2018).

Acknowledgements. This research was partly funded by
DARPA under the Assured Autonomy program, the Royal
Academy of Engineering (via a Chair in Emerging Tech-
nologies), the Royal Society (NIF\R1\182194), and ESPRC
(grant EP/P016871/1).

References
Akintunde, M. E.; Lomuscio, A.; Maganti, L.; and Pirovano,
E. 2018. Reachability analysis for neural agent-environment
systems. In Proceedings of the 16th International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR18), 184–193. AAAI Press.
Anderson, R.; Huchette, J.; Tjandraatmadja, C.; and Vielma,
J. 2019. Strong mixed-integer programming formulations
for trained neural networks. In Integer Programming and
Combinatorial Optimization (IPCO19), Lecture Notes in
Computer Science, 27–42. Springer.
Bastani, O.; Ioannou, Y.; Lampropoulos, L.; Vytiniotis, D.;
Nori, A. V.; and Criminisi, A. 2016. Measuring neural net
robustness with constraints. In Proceedings of the 30th In-
ternational Conference on Neural Information Processing
Systems (NIPS16), 2613–2621.
Bunel, R. R.; Turkaslan, I.; Torr, P.; Kohli, P.; and
Mudigonda, P. K. 2018. A unified view of piecewise lin-
ear neural network verification. In Proceedings of the 31st
Annual Conference on Neural Information Processing Sys-
tems (NeurIPS18). Curran Associates, Inc. 4790–4799.
Cheng, C.-H.; Nührenberg, G.; and Ruess, H. 2017. Max-
imum resilience of artificial neural networks. In Automated
Technology for Verification and Analysis, 251–268. Springer
International Publishing.
Dvijotham, K.; Stanforth, R.; Gowal, S.; Mann, T.; and
Kohli, P. 2018. A dual approach to scalable verification of
deep networks. In Proceedings of the 34th Annual Confer-
ence on Uncertainty in Artificial Intelligence (UAI18), 162–
171. AUAI Press.
Ehlers, R. 2017. Formal verification of piece-wise linear
feed-forward neural networks. In Proceedings of the 15th
International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA17), volume 10482 of Lecture
Notes in Computer Science, 269–286. Springer.
Fazlyab, M.; Morari, M.; and Pappas, G. J. 2019. Safety
verification and robustness analysis of neural networks via
quadratic constraints and semidefinite programming. arXiv
preprint arXiv:1903.01287.
Fischetti, M., and Jo, J. 2018. Deep neural networks and
mixed integer linear optimization. Constraints 1–14.
Gehr, T.; Mirman, M.; Drachsler-Cohen, D.; Tsankov, P.;
Chaudhuri, S.; and Vechev, M. 2018. AI2: Safety and ro-
bustness certification of neural networks with abstract inter-
pretation. In Proceedings of the 39th IEEE Symposium on
Security and Privacy (S&P18), 948–963.
Julian, K.; Lopez, J.; Brush, J.; Owen, M.; and Kochender-
fer, M. 2016. Policy compression for aircraft collision avoid-
ance systems. In Proceedings of the 35th Digital Avionics
Systems Conference (DASC16), 1–10.
Karmarkar, N. 1984. A new polynomial-time algorithm
for linear programming. In Proceedings of the 16th Annual
ACM Symposium on Theory of Computing (STOC84), 302–
311. ACM.
Katz, G.; Barrett, C. W.; Dill, D. L.; Julian, K.; and Kochen-
derfer, M. J. 2017. Reluplex: An efficient SMT solver

for verifying deep neural networks. In Proceedings of the
29th International Conference on Computer Aided Verifica-
tion (CAV17), volume 10426 of Lecture Notes in Computer
Science, 97–117. Springer.
Katz, G.; Huang, D. A.; Ibeling, D.; Julian, K.; Lazarus, C.;
Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljic, A.; Dill, D. L.;
Kochenderfer, M. J.; and Barrett, C. W. 2019. The marabou
framework for verification and analysis of deep neural net-
works. In Proceedings of the 31st International Conference
on Computer Aided Verification (CAV19), 443–452.
Kouvaros, P., and Lomuscio, A. 2018. Formal verifi-
cation of cnn-based perception systems. arXiv preprint
arXiv:1811.11373.
Krizhevsky, A.; Nair, V.; and Hinton, G. 2014. The CIFAR-
10 dataset. http://www.cs.toronto.edu/kriz/cifar.html.
LeCun, Y.; Cortes, C.; and Burges, C. J. 1998. The MNIST
database of handwritten digits.
Liu, C.; Arnon, T.; Lazarus, C.; Barrett, C.; and Kochender-
fer, M. 2019. Algorithms for verifying deep neural net-
works. CoRR abs/1903.06758.
Lomuscio, A., and Maganti, L. 2017. An approach to reach-
ability analysis for feed-forward relu neural networks. CoRR
abs/1706.07351.
Raghunathan, A.; Steinhardt, J.; and Liang, P. S. 2018.
Semidefinite relaxations for certifying robustness to adver-
sarial examples. In Proceedings of 31st Annual Conference
on Neural Information Processing Systems (NeurIPS18),
10900–10910.
Rubies-Royo, V.; Calandra, R.; Stipanovic, D. M.; and Tom-
lin, C. 2019. Fast neural network verification via shadow
prices. In Proceedings of the 36th International Conference
on Machine Learning (ICML19).
Tjeng, V.; Xiao, K. Y.; and Tedrake, R. 2019. Evaluating
robustness of neural networks with mixed integer program-
ming. In Proceedings of the 7th International Conference
on Learning Representations (ICLR19).
Venus. 2019. https://vas.doc.ic.ac.uk/software/neural.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018a. Efficient formal safety analysis of neural networks.
In Proceedings of the 31st Annual Conference on Neural
Information Processing Systems 2018 (NeurIPS18), 6369–
6379.
Wang, S.; Pei, K.; Whitehouse, J.; Yang, J.; and Jana, S.
2018b. Formal security analysis of neural networks using
symbolic intervals. In Proceedings of the 27th USENIX Se-
curity Symposium, (USENIX18), 1599–1614.
Zhang, H.; Weng, T.; Chen, P.; Hsieh, C.; and Daniel, L.
2018. Efficient neural network robustness certification with
general activation functions. In Proceedings of the 31st An-
nual Conference on Neural Information Processing Systems
2018 (NeurIPS2018), 4944–4953. Curran Associates, Inc.

