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ABSTRACT
We present a framework for verifying strategic behaviour in an

unbounded multi-agent system. We introduce a novel probabilistic

semantics for parameterised multi-agent systems and define the

corresponding verification problem against two probabilistic vari-

ants of alternating-time temporal logic. We define a verification

procedure using an abstract model construction. We show that the

procedure is complete for one variant of our specification language,

and partial for the other. We present an implementation and report

experimental results.
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1 INTRODUCTION
A key difficulty in deploying multi-agent systems (MAS) in critical

applications is to ensure that the MAS under development meets

its intended specifications. Languages such as epistemic logic and

alternating-time logic (ATL) have been put forward as specification

languages to reason about the complex interactions that MAS may

generate. Two features of ATL [1] make it attractive for reasoning

about MAS. The first is its expressiveness to encode strategic inter-

play among agents; the second is that its verification problem is in

PTIME when complete information is assumed. Extensions of ATL

such as SL[SG] have also been proposed which strictly increase the

expressivity of the logic whilst preserving tractability of the model

checking problem [7].

One limiting aspect of these logics is the lack of support for

representing the stochastic behaviour of the agents in the system,

as is done in probabilistic model checking approaches [12, 15, 19, 33].

Proposals to address this in the context of ATL have recently been

put forward, as we discuss below, probabilistic variants of ATL have

been introduced [13, 16]. A limitation of these approaches is that

the number of agents constituting the MAS has to be known at

design-time.

This is an unrealistic assumption in many scenarios, however.

For example, drone swarms can be deployed in varying numbers

depending on the scale of the application. In these cases, it is de-

sirable not only to check systems of a fixed size, but to be able

to give guarantees that a certain specification holds in systems of

any size. The area of parameterised verification [10] is concerned

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

with developing methods to achieve this. While in its most general

formulation, the parameterised verification problem is known to

be undecidable [4], restrictions to the problem have been used to

identify decidable fragments [3, 17, 21]. However, no approach ex-

ists for verifying unbounded MAS against strategic properties in a

stochastic setting.

In this paper we overcome this significant restriction in the state-

of-the-art. Specifically, we develop a parameterised verification

method, based on counter abstraction [29], for checking unbounded

probabilistic MAS against strategic properties expressed in a frag-

ment of PATL* where we do not allow nesting of strategic operators.

Although for ease of presentation we consider systems composed of

identical agents, the results presented here also extend to heteroge-

neous systems. In addition to the theoretical results that we study,

the implementation that we report shows its potential usefulness

when studying MAS protocols, including security inspired ones,

such as the jamming scenario [34] here studied.

The rest of this paper is organised as follows. After a discussion

of related work below, in Section 2 we introduce some background

notions on probabilistic model checking. We introduce a novel se-

mantics for reasoning about strategic properties in probabilistic

MAS of a possibly unbounded size in Section 3. In Section 4 we

introduce a model checking procedure for the parameterised verifi-

cation problem. This procedure is partial in general, but complete

for one variant of our specification logic. We present an implemen-

tation in Section 5 and give experimental results. We conclude in

Section 6.

RelatedWork.Approaches to probabilistic model checking and

synthesis against specifications addressing the strategic interplay

of agents have been put forward [2, 6, 13, 16]. Further, implementa-

tions such as PRISM-games have been developed, thereby enabling

the verification of concrete systems [11, 25]. However, in this work

the number of agents in the system is constant and fixed at design-

time. This is not adequate for the verification of unbounded multi-

agent systems such as drone swarms, where the number of agents

that make up the system at run-time may vary. This is the problem

we address in this paper.

Recently, a method for the parameterised verification of strategic

properties expressed in ATL has been proposed [20]. However, the

systems considered there do not incorporate probabilistic aspects,

as we do here. Robotic scenarios, particularly swarm robotics, often

require a stochastic analysis.

Work has also been carried out on the parameterised verifica-

tion of probabilistic processes [8, 9]. Our work differs from this in

two ways. Firstly, the communication patterns between our agents

are distinct and tailored more towards modelling AI systems than



network protocols. Secondly, the strategic properties we consider

are more expressive than the reachability ones considered there.

Closest to the work here reported is the line of work in [27, 28],

which addresses the verification of unbounded MAS against two

variants of probabilistic temporal logic. However, strategic prop-

erties have not been considered in this line of work either. So,

the method here presented is considerably more expressive and

powerful than the above. Additionally, the models used in [28]

are very distinct from ours, in that the agents act asynchronously,

with synchronisation depending on the type of action performed.

In the models presented here, however, the agents act in a fully

synchronous manner. This is somewhat closer to the semantics pre-

sented in [27]. However, the models presented there cannot support

strategic properties as the agents’ choices are purely stochastic and

non-determinism is not supported. Additionally, the environment

used there is purely deterministic, whereas we model probabilistic

environments thereby enabling for more considerably more realis-

tic scenarios. These significant technical differences require novel

verification methods, which we propose here. Further, they require

a novel implementation based on a model checker that supports

the verification of strategic properties, which we also provide here.

2 BACKGROUND
In this section we introduce the probabilistic model checking back-

ground and notation used throughout the paper.

Discrete TimeMarkov Chains.We briefly summarise discrete
timeMarkov chains (DTMCs). Formore background onmodel check-

ing DTMCs, see [5, 18, 23].

As is typical, given a countable set A, we will use Dist(A) to
denote the set of probability distributions on A, i.e., functions f :

A → [0, 1] such that

∑
a∈A f (a) = 1. When we have a function

t : X → Dist(A), we will abbreviate (t(x))(a) as t(a |x).

Definition 2.1 (DTMC). A discrete-time Markov chain (DTMC) is

a tupleD = ⟨S, ι, t, L⟩, where S is a countable set of states, ι ∈ S is a

distinguished initial state, t : S → Dist(S) is a transition probability

function, and L : S → 2
AP

is a labelling function on a set AP of

atomic propositions.

A path in a DTMC is a sequence of states s0s1s2 . . ., such that

for every i ∈ N it is the case that t(si+1 |si ) > 0. We use FPathD
and IPathD respectively, to denote the set of all finite and infinite

paths starting from the initial state ι. Given a path ω ∈ (FPathD ∪
IPathD ), we will use ωi to denote the i-th state in ω and ω(i) to
denote the suffix of ω obtained by removing the first i states.

For a finite path we define its probability by PD (s0 . . . sn ) ≜∏n−1

i=0
t(si+1 |si ). This can be extended to a probability measure on

sets of infinite paths, see [18, 23] for details.

Markov Decision Processes. We now introduce Markov de-
cision processes (MDPs). We refer to [5, 31] for more details. We

mostly follow the notation from [14].

Definition 2.2 (MDP). A Markov decision process (MDP) is a

tupleM = ⟨S, ι,A, P, t, L⟩ where S is a finite set of states, ι ∈ S is a

distinguished initial state, A is a finite set of actions, P : S → 2
A
is

a protocol function (such that P(s) , ∅ for all s ∈ S), t : S × A→
Dist(S) is a transition function and L : S → 2

AP
is a labelling

function on a set AP of atomic propositions.

Intuitively, a transition from a state s in an MDP occurs by first

non-deterministically selecting some action a ∈ P(s) and then

transitioning to state s ′ with probability t(s ′ |s,a). MDPs thus give

a way of describing systems that include both probabilistic and

non-deterministic choice, unlike DTMCs which do not capture the

latter.

A path in an MDP is a sequence of states and actions s0a0s1a2 . . .

such that for every i ∈ N it is the case thatai ∈ P(si ) and t(si+1 |si ,ai ) >
0. We use FPathM (IPathM , respectively) to denote the set of all

finite (infinite, respectively) paths starting from the initial state ι.

For a finite path ω = s0a0 . . . sn , last(ω) ≜ sn denotes its last state.

In order to reason about the probability of a path occurring in

an MDP, we need a way to resolve the inherent non-determinism.

This is captured by a scheduler (also referred to as an adversary,
strategy or policy in the literature), which gives the probability of

each action being chosen after a certain sequence of states.

Definition 2.3 (Scheduler). Given an MDPM = ⟨S, ι,A, P, t, L⟩,
a scheduler for M is a function σ : FPathM → Dist(A), such
that for any finite path ω ∈ FPathM , we have σ (a |ω) > 0 only if

a ∈ P(last(ω)).

We denote by SchM the set of all schedulers forM. Various

classes of schedulers may be defined [14]. Note that when maximis-

ing or minimising the probability of reaching a target set of states,

it is sufficient to use schedulers that are memoryless (functions

that only depend on the last state of the path) and deterministic

(functions onto distributions taking values only in {0, 1}, i.e. Dirac

distributions).

We now proceed to define the DTMC induced by a scheduler on

an MDP. This describes the purely probabilistic system that results

from fixing a given choice of scheduler in an MDP.

Definition 2.4 (Induced DTMC). Given an MDPM = ⟨S, ι,A, P,
t, L⟩ and a scheduler σ : FPathM → Dist(A), the induced DTMC

Mσ = ⟨FPathM, ι, t
′, L′⟩ is defined by:

• t ′ : FPathM → Dist(FPathM ) is given by:

t ′(ρ ′ |ρ) ≜

{
σ (a |ρ) × t(s |last(ρ),a) if ρ ′ = ρas

0 otherwise

• L′(ρ) ≜ L(last(ρ)) for all ρ ∈ FPathM

Notice that while in general the induced DTMC might have an

infinite number of states, when considering memoryless schedulers

it is possible to derive an equivalent DTMC that has only finitely

many states (we omit the details of this construction, which can

be found in [14]). Since memoryless schedulers are sufficient when

considering maximising or minimising the satisfaction of temporal

properties [14], the induced DTMCs we consider later in this paper

can all be regarded as finite.

3 PROBABILISTIC MULTI-AGENT SYSTEMS
In this section we introduce a semantics for describing probabilistic

MAS of possibly unbounded size. We then introduce a logic for

reasoning about strategic properties of these.

Semantics. Our semantics is based on a modification of [27].

The semantics given in [27] does not support the modelling of

strategic behaviour since the choices of actions performed by agents



are based on a fixed probability distribution. We here augment

their semantics with non-determinism to allow us to reason about

strategies.

To encode arbitrarily many agents with stochastic behaviour, we

introduce a probabilistic agent template to express the behaviour of

the agents in the system and an environment to capture the rest of

the state of the system. Any concrete system is composed of a finite

number of agents, instantiated from the agent template, interacting

with the environment.

Definition 3.1. (Probabilistic Agent Template) A probabilistic
agent template is a tuple T = ⟨S, ι,Act, P, t⟩ where:
• The finite set S , ∅ represents the agent’s local states.
• ι ∈ S is a distinguished initial state.

• Act , ∅ is a finite set of possible local actions, where we

assume a null action ε ∈ Act exists.
• The agent’s protocol function P : S → 2

Act
gives the set of

possible actions in each state. Note we assume that for all

s ∈ S we have ε ∈ P(s), i.e., the null action is always possible.

• The agent’s transition function t : S ×ActE × 2
Act ×Act →

Dist(S) returns a distribution on the agent’s next state given

its current state, the environment’s action, the set of actions

performed by all the agents (including the one performed

by the agent being considered) and the action performed by

this agent at this time-step. We assume that, for all s , X and

aE , it is the case that:

t(s |s,aE ,X , ε) = 1 (1)

We also assume that, for all s ′, s , X , aE and a:

t(s ′ |s,aE ,X ,a) = t(s ′ |s,aE ,X ∪ {ε},a) (2)

Notice that by (1) it is the case that agents performing the null

action never change state. Further, by (2), other agents cannot ob-

serve that the null action has been performed. These two conditions

ensure that agents can always choose to behave as if they are not

there, and not affect the other agents.

Further, note that while for ease of presentation we assume that

all agents are based on the same template, the framework can be

extended to accommodate a finite number of different templates.

Additionally, while all agents share the same set of states and pos-

sible actions, they can each exhibit different behaviours by making

different choices of actions.

We have also assumed that there is a unique initial state, rather

than a probability distribution on the initial states as is sometimes

done in probabilistic model checking literature. This does not reduce

the expressiveness of our model, however, since the first action of

the agent can be used to stochastically choose what state to begin

from.

We now define the environment the agents interact with.

Definition 3.2. (Probabilistic Environment) A probabilistic envi-

ronment is a tuple E = ⟨SE , ιE ,ActE , PE , tE ⟩ where:

• The finite set SE , ∅ represents the environment’s local

states.

• ιE ∈ SE is a distinguished initial state.

• ActE , ∅ is a finite set of possible environment actions.

• The environment’s protocol function PE : SE → 2
ActE

gives

the set of possible actions in each state.

(a) An example agent template.

(b) An example environment.

Figure 1: An example probabilistic multi-agent system. We
useX to denote the set of actions performed by all the agents.
Note that for clarity the null actions ε are omitted.

• The environment’s transition function tE : SE × 2
Act ×

ActE → Dist(SE ) returns a distribution on the environ-

ment’s next state given its current state, the actions per-

formed by all the agents and the action it performed.

We assume that, for all s ′E , sE , X and aE :

tE (s
′
E |sE ,X ,aE ) = t(s ′E |sE ,X ∪ {ε},aE ) (3)

Note that, by (3), the environment cannot observe whether a null

action was performed by any of the agents, thus agents performing

null actions do not affect the transition of the system in any way.

Having defined its key components, we now define a probabilistic

MAS as consisting of an agent template and environment, together

with a labelling function.

Definition 3.3. (Probabilistic Multi-Agent System) A probabilistic
multi-agent system (PMAS) is a tuple S = ⟨T , E,V⟩, where T is a

probabilistic agent template, E is an environment andV : S×SE →
2
AP

is a labelling function on a set of atomic propositions AP .

An example PMAS can be seen in Figure 1. Here, agents in the

initial state 0 can perform an a action, which with equal probability

takes them either to state 1 or state 2. In state 1, agents can perform

the b action that does not change their state. In state 2, agents can

perform a c action which takes them to state 3 but only if no agents

performed the b action at the same time. Once in state 3, agents

can perform the d action. The environment only has one action e
that takes it to state 5 if an agent performed the d action.

A PMAS S gives a description of an infinite number of concrete

systems that can be obtained by fixing a number n of agents in

it. We now define how to obtain such a concrete model, which

will be encoded as a Markov decision process (MDP) [31]. We use

Ûn ≜ {1, . . . ,n} to denote the set of concrete agents.

Definition 3.4. (Concrete Model) Given a PMAS S, a concrete
model of n agents for S is an MDP S(n) = ⟨Gn, ιn, Actn, Pn, Ln⟩,



Figure 2: The concrete system corresponding to instantiat-
ing the PMAS in Figure 1 with two agents. Note that transi-
tions involving the null action ε are omitted for clarity – the
full system with null transitions has more choices of transi-
tions and reachable states.

representing the behaviour of a global system composed of n agents

and the environment, where:

• The set of global states Gn = S × · · · × S × SE is the set of

(n + 1)-tuples giving a local state for each of the n agents

and the environment. Given a global state д we write д.i to
denote the local state of agent i and д.E to denote the local

state of the environment.

• The global state ιn = (ι, . . . , ι, ιE ) ∈ Gn is the initial global

state of the model S(n).
• The set Actn = Act × · · · × Act × ActE is the set of global

actions, i.e., (n + 1)-tuples representing the actions for each

of the n agents in S(n) and the environment. Given a global

action a, we write a.i to denote the action of agent i , and a.E
to denote the action of the environment.

• The protocol function Pn : Gn → 2
Actn

is defined by:

Pn (д) ≜ {a ∈ Actn | ∀i ∈ Ûn : a.i ∈ P(д.i),

a.E ∈ PE (д.E)}

• The transition probability tn : Gn × Actn → Dist(Gn ) is

given by:

tn (д
′ |д,a) ≜ tE (д

′.E |д.E,X ,a.E)

×

n∏
i=1

t(д′.i |д.i,a.E,X ,a.i)

where X ≜ {a.1, . . . ,a.n} is the set of actions performed by

at least one agent.

• The labelling function Ln : Gn → 2
AP× Ûn

is defined by:

Ln (д) ≜ {(p, i) ∈ AP × Ûn | p ∈ V(д.i,д.E)}

An example of a concrete system can be seen in Figure 2. In the

initial state, both agents can perform a and the environment can

perform e . In the following states, agents in state 1 perform b and

agents in state 2 perform c . If both perform c , then they can move to

state 3 and perform d , causing the environment state to change to

5. Note that if the null actions were not omitted, the agents in state

1 could choose to perform the null action ε instead of b in order to

allow agents in state 2 to move to state 3, so the environment state

5 would be reachable in more cases.

Notice that before we can reason about the probability of a

path occurring in this concrete system we need to resolve the non-

determinism of the choice of actions by the agents and environment.

We do this with the definition below.

Definition 3.5. (Agent Strategy) Given a concrete system S(n), a
strategy for an agent i ∈ Ûn is a function σi : FPathGn → Dist(Act)
such that for all ω ∈ FPathGn it is the case that σ (a |ω) > 0 implies

a ∈ P(last(ω).i).

A strategy for the environment σE is similarly defined. Given

a set of agents, possibly including the environment, A ⊆ Ûn ∪ {E}
we use σA to denote a strategy profile giving a strategy for each

of these, i.e. σA : A→ (FPathGn → Dist(Act)) with σA(a) a valid

strategy for every a ∈ A. We use Ac ≜ ( Ûn ∪ {E}) \A to denote the

complement of A.
When we fix a joint strategy σ for all the agents and the envi-

ronment then the non-determinism in the system is eliminated and

the system becomes a discrete time Markov chain (DTMC) [18] as

described in Definition 2.4.

Specifications.We consider specifications based on a fragment

of PATL
∗
[13], which we call P[ATL

∗
]. Given a set AP of atomic

propositions, P[ATL
∗
] formulae are defined by the following gram-

mar:

ϕ ::= ⟨⟨A⟩⟩P▷◁r [ψ ]

ψ ::= ⊤ | (p, i) | ¬ψ | ψ ∧ψ | Xψ | ψUψ ,

where A ⊂ Z+ ∪ {E} is a finite set of agents (and possibly the

environment), p ∈ AP , i ∈ Z+, ▷◁∈ {<, ≤, ≥, >} and r ∈ [0, 1].
Notice this corresponds to the fragment of PATL

∗
in which we

only allow one strategy operator at the top of the formula. While

not as general as full PATL
∗
, this fragment is still expressive enough

to allow us to verify properties of interest in multi-agent systems,

as we will see in Section 5.

The formula ⟨⟨A⟩⟩P▷◁r [ψ ] is read as “agentsA have a strategy to

ensure thatψ occurs with probability ▷◁ r”. The temporal modality

Xψ means that “ψ holds at the next time-step”; ψ1Uψ2 stands for

“at some point ψ2 holds and before then ψ1 is true”. We also use

standard abbreviations such as Fψ ≡ ⊤Uψ and Gψ ≡ ¬F¬ψ .
To illustrate the language, consider an opinion formation proto-

col [32] where a group of robots have to agree on some choice of

option. Then, the P[ATL
∗
] formula

⟨⟨2, E⟩⟩P≥0.5[G¬(decisionReached, 1)]

represents that agent 2 and the environment have a strategy that

ensures with probability at least 0.5 that agent 1 does not reach

a decision. Notice that such a property could not be expressed in

previous work on verifying unbounded probabilistic systems [27,

28], which did not support expressing strategic specifications.

We say a formula ism-indexed if it refers to agents with index

at mostm. For instance, the example formula above is a 2-indexed

formula.



We now formally define the satisfaction relation for this logic.

Definition 3.6. (Satisfaction) Given a concrete system S(n) and
anm-indexed P[ATL

∗
] formula ϕ = ⟨⟨A⟩⟩P▷◁r [ψ ] withm ≤ n, we

say the formula is satisfied in S(n), denoted by ϕ |= S(n) iff there

is some strategy profile σA for the agents in A such that for all

strategy profiles σAc for the agents in Ac it is the case that:

PS(n)σ ({ω ∈ IPathS(n)σ (ι) : ω |= ψ }) ▷◁ r

where S(n)σ denotes the DTMC obtained by fixing the joint strat-

egy given by σA and σAc in S(n). Satisfaction of path formulas in

this DTMC is defined by:

ω |= ⊤ always holds

ω |= (a, i) iff (a, i) ∈ Ln (ω0)

ω |= ¬ψ iff ω ̸ |= ψ
ω |= ψ1 ∧ψ2 iff ω |= ψ1 and д |= ψ2

ω |= Xψ iff ω(1) |= ψ
ω |= ψ1Uψ2 iff for some i ≥ 0, ω(i) |= ψ2 and for all

0 ≤ j < i , ω(j) |= ψ1

Notice that the set of paths defined by the path formula ψ is

always measurable (see Corollary 2.4 in [33]), so the probability is

well-defined.

We also consider a variant of this logic, which we call P[ATL
∗
k ],

where the specifications can only describe properties of finite traces

rather than infinite one. In particular, P[ATL
∗
k ] formulae are defined

by the following grammar:

ϕ ′ ::= ⟨⟨A⟩⟩P▷◁r [ψ
′]

ψ ′ ::= ⊤ | (p, i) | ¬ψ ′ | ψ ′ ∧ψ ′ | Xψ ′ | ψ ′U ≤kψ ′,

where k ∈ N and the other components are as before.

The new operatorψ ′
1
U ≤kψ ′

2
is read as “at some point within k

time-stepsψ ′
2
holds and before thenψ ′

1
is true”.

We now define the time bound of a formula. Intuitively, this en-

codes how many steps of a system’s behaviour we need to consider

in order to check the formula.

Definition 3.7. (Time Bound) The time bound tb(ψ ′) for a P[ATL∗k ]

path formulaψ ′ is defined as:

tb(ψ ′) ≜



tb(ψ ′
1
) ifψ ′ = ¬ψ ′

1

max(tb(ψ ′
1
), tb(ψ ′

2
)) ifψ ′ = ψ ′

1
∧ψ ′

2

k + tb(ψ ′
1
) ifψ ′ = Xkψ ′

1

k +max(tb(ψ ′
1
), tb(ψ ′

2
)) ifψ ′ = ψ ′

1
U ≤kψ ′

2

0 otherwise

For instance, in the opinion formation scenario previously con-

sidered, the P[ATL
∗
k ] formula

⟨⟨2, E⟩⟩P≥0.5[G
≤20¬(decisionReached, 1)]

represents that agent 2 and the environment have a strategy that

ensures with probability at least 0.5 that agent 1 does not reach

a decision for the first 20 time-steps. The path formula has a time-

bound of 20.

Formally, the satisfaction relation for the time-bounded operator

is defined by:

ω |= ψ ′
1
U ≤kψ ′

2
iff for some 0 ≤ i ≤ k ω(i) |= ψ ′

2
and

for all 0 ≤ j < i , ω(j) |= ψ ′
1

Satisfaction of the other operators is defined as before.

For the remainder of this paper, when we refer to “a formula,”

we mean a formula in either P[ATL
∗
] or P[ATL

∗
k ]. Where a result

applies only to one variant, this will be made explicit.

The parameterised model checking problem is concerned with

checking whether a formula is satisfied in instances of any size.

This is formalised below.

Definition 3.8. (PMCP) Given a PMAS S and anm-indexed for-

mula ϕ, the PMCP is to determine whether S(n) |= ϕ for all n ≥ m.

If this is the case we write S |= ϕ.

Notice that in general the PMCP is undecidable since it extends

a problem that is already known to be undecidable [4] with prob-

abilities and strategies. However, it is still of interest to explore

decidable fragments of this, as we do in the next section.

4 MODEL CHECKING PROCEDURE
In this section we develop a decision procedure to the PMCP for

formulas of the form ⟨⟨A⟩⟩P≥r [ψ ]. Other choices of inequality can

be checked similarly.

The following concept will be used in the rest of the paper.

Definition 4.1. (Maximal Probability) Let S be a PMAS,A a coali-

tion of agents andψ a path formula. Then we use ⟨⟨A⟩⟩Pn,max=?[ψ ]
to denote the maximal value of r ∈ [0, 1] for which it is the case

that S(n) |= ⟨⟨A⟩⟩P≥r [ψ ].

Intuitively, in the above definition ⟨⟨A⟩⟩Pn,max=?[ψ ] is the max-

imum probability with which the agentsA can ensureψ is achieved

in a system of size n. Note that since the system of size n is finite,

this is well-defined and there is a strategy that achieves it.

Observe that if we can compute the minimum and maximum

values for ⟨⟨A⟩⟩Pn,max=?[ψ ] as we range over n, we can obtain a

decision procedure for the PMCP. The rest of the section is devoted

to exploiting this intuition.

The following result gives the maximum value as it shows that

⟨⟨A⟩⟩Pn,max=?[ψ ] is non-increasing.

Lemma 4.2. Let S be a PMAS. Then, for any set of agents A and
path formulaψ it is the case that:

⟨⟨A⟩⟩Pn,max=?[ψ ] ≥ ⟨⟨A⟩⟩Pn+1,max=?[ψ ]

for values of n larger than the index of the formula.

Proof sketch. Notice that all agents in A appear already in the

system of size n since this is larger than the index of the formula.

The additional agent in the system of size n + 1 is thus in Ac and
will not be collaborating to maximise ψ . Observe that this agent
can choose a strategy where it always performs the null action, in

which case the probability ofψ being satisfied that the agents in A
can achieve will remain unchanged. This gives our result. □

This lemma is a probabilistic equivalent of the intuitive property

that in a non-probabilistic systemwith null actions, adding an agent

that is not part of the coalition trying to achieve a formula will not

make it satisfied if it was not already.

It follows from the lemma that to compute the maximum value

of ⟨⟨A⟩⟩Pn,max=?[ψ ] as we vary n for an m-indexed formula, it

suffices to compute the value of ⟨⟨A⟩⟩Pm,max=?[ψ ]. Note that it is
immediate that this maximum is attained, since the system of size

m achieves it.



We now develop a method to compute the minimum of this value.

We do this by creating an abstract model whose states have two

components: the first captures the state of the firstm agents (i.e.,

the agents 1, . . . , m which are referred to in the formula), the second

records the set of states that arbitrarily many other agents are in.

Note that the number of agents in each state is not recorded.

This abstract model is inspired by the counter abstraction [29]

models used in [27]. However, these are adapted to the different

semantics developed here.

We formalise the abstract model below.

Definition 4.3. (Abstract Model) Given a PMAS S, an abstract
model ofm agents for the systemS is anMDP

¯S(m) = ⟨Ḡm, ῑm, Āctm,
P̄m, L̄m⟩, where:

• The set of possible global states Ḡm ⊆ Gm × 2
S
have two

components. The first records the state of the firstm agents,

the second is a set recording all local states of all other agents.

• The initial state is ῑ ≜ (ι, {ι}).
• The set of possible actions is Āctm ≜ Actm × 2

Act
.

• The protocol function P̄m : Ḡm → 2
¯Actm

is defined by:

P̄m (д,X ) ≜ {(a,Y ) ∈ Āctm | a ∈ Pm (д),

∀a′ ∈ Y∃s ∈ X : a′ ∈ P(s)}

• The transition probability t̄m : Ḡm × Āctm → Dist(Ḡm ) is

given by:

t̄n ((д
′,X ′)|(д,X ), (a,Y )) ≜

tE (д
′.E |д.E,Z ,a.E) ×

m∏
i=1

t(д′.i |д.i,a.E,Z ,a.i)

×


1 if X ′ = X∪{s ′ ∈ S | ∃s ∈ X∃a′ ∈ Y ∩ P(s) :

t(s ′ |s,a.E,Z ,a′) > 0}

0 otherwise

whereZ ≜ {a.1, . . . ,a.m}∪Y is the set of actions performed

by at least one agent in either the first component or the

second.

• The labelling function L̄m : Ḡm → 2
AP× Ûm

is given by:

L̄m (д,X ) ≜ Lm (д)

The function L̄m discards information not pertaining to the

first m agents, since this is not needed to evaluate an m-

indexed formula.

Intuitively, the second component of the global state may grow

as the system evolves from the initial state to capture all the states

that it is possible for one or more of the agents to have reached.

Part of an example abstract model can be seen in Figure 3. In

the initial state, the first two agents can perform action a and

the environment can perform action e; their state is updated as it

would be in the concrete model. The remaining agents, encoded in

the second component of the state, can either do nothing or also

perform a. If they perform a then the abstract model assumes that

each of states 1 and 2 is reached by at least one of them, and the

second component is updated to {0, 1, 2}.

Notice that when defining a joint strategy for the abstract model,

this also includes a choice of the set of actions performed by the

agents in the second component of the state. As in Definition 4.1,

Figure 3: The initial state and first set of transitions for the
abstract model with two agents of the PMAS in Figure 1. We
omit the null actions ε for clarity.

we can define the maximal probability in the abstract model ofm
agents. We denote this by ⟨⟨A⟩⟩P̄m,max=?[ψ ].

This brings us to the other main result of this section, which

gives a lower bound on the values of ⟨⟨A⟩⟩Pn,max=?[ψ ].

Lemma 4.4. Let S be a PMAS. Then, for any set of agents A and
path formulaψ it is the case that:

⟨⟨A⟩⟩Pn,max=?[ψ ] ≥ ⟨⟨A⟩⟩P̄m,max=?[ψ ]

wherem is the index of the formula and n ≥ m.

Proof sketch. Let σ̄A denote the strategy for the agents A in

¯S(m) that achieves the maximum probability ⟨⟨A⟩⟩P̄m,max=?[ψ ].
Consider the strategy σA in S(n) which behaves in the same way.

Now notice that this strategy also achieves at least the same proba-

bility since the agents in the second component of
¯S(m) can choose

any actions that the extra agents inS(n) can. This shows our desired
result. □

Intuitively, the abstract model represents a more powerful op-

ponent for the agents in A than any concrete system, since within

the second component it captures the possible behaviours of an

arbitrarily large number of agents.

When considering only formulas from the restricted P[ATL
∗
k ]

logic, we also have that the probability given by the abstract model

is arbitrarily approached by sufficiently large systems. This is for-

malised below.

Lemma 4.5. Let S be a PMAS. Then, for any set of agents A,
P[ATL∗k ] path formulaψ ′ and ε > 0 it is the case that there is some
n ∈ Z+ such that:

⟨⟨A⟩⟩Pn,max=?[ψ
′] < ⟨⟨A⟩⟩P̄m,max=?[ψ

′] + ε

wherem is the index of the formula.

Proof sketch. Notice that we are only interested in the first

tb(ψ ′) steps of behaviour of the system. Given a number of agents

k , we denote by Pk the maximum probability that the agents can

achieve of reaching every reachable state at every transition for

the first tb(ψ ′) time-steps. Notice that Pk tends to 1 as k increases,



Algorithm 1 Decision Procedure for the PMCP

Input: PMAS S,m-indexed formula ϕ = ⟨⟨A⟩⟩P≥r [ψ ]
Output: Boolean

1: if r ≤ MaximalProb ( ¯S(m),A,ψ ) then
2: return true
3: else if ϕ ∈ P[ATL∗k ] then
4: return false
5: end if
6: for i ←m,m + 1,m + 2, . . . do
7: if MaximalProb (S(i),A,ψ ) < r then
8: return false
9: end if
10: end for

since if there are many agents there is a high chance at least one

will follow each of the finitely many transition that can occur in

the first tb(ψ ′) time-steps. Further, when every reachable state is

reached at every transition, the path in the concrete system has

a corresponding path in the abstract model. Thus, it must be the

case that ⟨⟨A⟩⟩Pk ,max=?
[ψ ′] approaches ⟨⟨A⟩⟩P̄m,max=?[ψ

′] as k
increases, and the result follows. □

Exactly computing a sufficiently large value of n for the result to

hold can be carried out similarly to the proof of Theorem 4 in [27].

The lemma above shows that for P[ATL
∗
k ] formulas, sufficiently

large systems achieve probabilities that are arbitrarily close to the

lower bound computed using the abstract model, i.e. this bound is

a tight one.

This leads us to our procedure, which is shown in Algorithm 1.

We use MaximalProb to denote a procedure that uses existing tech-

niques for probabilistic model checking of finite-state systems [25]

to compute the maximum probability as in Definition 4.1. We now

show the correctness of our algorithm.

Theorem 4.6. For all PMAS S and formulas ϕ = ⟨⟨A⟩⟩P≥r [ψ ]
for which Algorithm1 returns a value, it is the case that S |= ϕ iff
Algorithm1(S,ϕ) = true.

Proof sketch. Suppose a value was returned on line 2. By

Lemma 4.4, we have that MaximalProb ( ¯S(m),A,ψ ) is a lower

bound for the values of ⟨⟨A⟩⟩Pn,max=?[ψ ] as n varies. Thus, since

the required probability r is less than the lower bound, our property

must hold.

If a value is returned on line 4, then the required probability r
was higher than the lower bound. Further, our formula is a P[ATL

∗
k ]

one, so by Lemma 4.5 we know that this lower bound is tight. Thus,

the property cannot hold.

Finally, if we return on line 8, then there is some value of i for
which it is the case that MaximalProb (S(i),A,ψ ) < r , giving a

counterexample to our property holding. □

Notice that this procedure is complete for P[ATL
∗
k ] formulas, but

for a general P[ATL
∗
] one it may not terminate, as we may just test

systems of increasing size in the loop on line 6 and never find a

counterexample. Further, note that even in the complete case the

procedure may take time exponential in the number states of the

agent template since the abstract model that we check considers

all subsets of these. Despite this theoretical intractability, we will

see in the next section that our method can still be used to verify

practical examples of systems.

5 IMPLEMENTATION
We implemented the procedure described in the previous section in

an experimental toolkit called PSV-S (Probabilistic Swarm Verifier
for Strategic Properties), which is released as open-source [30].

Our tool is programmed in Java and based on an extension of

PRISM-games [11] that can handle concurrent games [25]. This in

turn builds on PRISM [24] by extending it to deal with strategic

properties.

The tool takes as input a system file describing the behaviour

of an agent and an environment, along with a properties file de-

scribing the properties that we wish to consider. It then constructs,

based on its configuration, either the abstract model (according to

Definition 4.3) in order to compute the lower bound on the prob-

ability according to Lemma 4.4, or the concrete model of a given

size (according to Definition 3.4).

In order to verify the functionality and scalability of our tool,

we used it to model a channel jamming security protocol [34]. In

our model of the protocol, there are k channels available to an

agent to send messages. At each time-step, an agent can choose one

channel to send a message. A number of agents in the system are

attackers; each of them can jam a channel. It is assumed that if a

message is sent along a non-jammed channel, then it is successfully

transmitted with probability 0.4. If it is sent along a channel that is

jammed by at least one attacker then this probability drops to 0.1.

The sending of messages and jamming of channels is modelled

in an agent template, with the choices of action for the agent at

each time-step being to send along a channel i (with 0 ≤ i < k)
or block a channel i (with 0 ≤ i < k). The environment acts as a

receiver for the messages, and tracks how many messages have

been received.

We wish to verify the property that with probability p a nomi-

nated agent (agent 1) can ensure that at least i messages are trans-

mitted within j time-steps. This can be expressed by the PATL
∗
k

property

⟨⟨1⟩⟩P≥p [F
≤j (transmittedi , 1)]

where transmittedi is an atomic proposition that holds when the

user has transmitted at least i messages.

Notice that, as observed in Section 4, in order to analyse proper-

ties of this form it is sufficient to find the value of

⟨⟨1⟩⟩Pn,max=?[F
≤j (transmittedi , 1)]

which represents the maximum probability that can be achieved by

agent 1 in a system of size n, as we vary the parameter n.
All results were obtained on a machine running OpenJDK 1.8.0

(64-bit version) and Ubuntu 18.04 (Linux kernel 4.15.0-69) with an

Intel i7-7700HQ processor and 24GB of RAM (out of 32GB total)

allocated to the JVM heap.

For our first experiment, we fixed the number of channels avail-

able to 4, the number of messages being transmitted to 3, and the

number of time-steps allowed for transmission to 15. We then used
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Figure 4: Graph showing the maximum probability
⟨⟨1⟩⟩Pn,max=?[F

≤15(transmitted3, 1)] for different values
of n. The number of channels is fixed to 4. The red dashed
lines show the expected lower and upper bounds according
to Lemmas 4.2 and 4.4.

our tool to compute the upper and lower bounds for

⟨⟨1⟩⟩Pn,max=?[F
≤15(transmitted3, 1)]

as n varies (as given by Lemma 4.2 and Lemma 4.4, respectively), as

well as the actual values of this for different values of n. Our results
are shown in Figure 4.

As expected, the actual values fall within the calculated range.

Further, the minimum value is attained once there are at least 5

agents in the system. This is expected since this corresponds to the

system where there are 4 attackers, which is enough for them to

have a joint strategy to block every channel. The computation of

the minimum and maximum values is much more efficient than

constructing systems of increasing size. The former takes around 5

seconds, the latter takes approximately 450 seconds for checking

just the system of size 5.

As a further experiment to verify the scalability of our tool, we

checked the time taken to construct the abstract model and use this

to compute the minimum probability of

⟨⟨1⟩⟩Pn,max=?[F
≤150(transmittedi , 1)]

as we varied the number of messages that we wished to receive

and the number of channels. Our results are in Table 1, along with

the total number of states and total number of transitions in the

abstract model.

Notice that varying the number of channels changes only the

number of transitions in the model since there are more choices

of channel to transmit on but the number of messages we have to

keep track of remains unchanged. Varying the number of messages

being sent, on the other hand, also changes the number of states.

No comparison of our tool’s performance to others is provided

since, to the best of our knowledge, no other tool allows the verifi-

cation of strategic properties in probabilistic multi-agents systems

with a possibly unbounded number of agents. Further, in order to

allow us to express strategic properties, the semantics have to be

k
3 4 5

i

5

0.37 / 0.28

24 / 14,976

3.80 / 2.29

24 / 78,336

86.66 / 35.89

24 / 387,072

10

0.56 / 0.47

44 / 27,456

6.40 / 3.29

44 / 143,616

156.35 / 77.77

44 / 709,632

25

0.98 / 0.98

104 / 64,896

15.42 / 7.30

104 / 339,456

395.20 / 157.90

104 / 1,677,312

50

1.80 / 2.27

204 / 127,296

29.13 / 16.76

204 / 665,856

timeout

75

2.52 / 3.34

304 / 189,696

41.63 / 22.12

304 / 992,256

timeout

Table 1: For different values of k (available channels)
and i (number of messages to transmit), the time
needed (in seconds) to respectively build the abstract
model and use this to compute the minimum value of
⟨⟨1⟩⟩Pn,max=?[F

≤150(transmittedi , 1)], along with the number
of states and transitions in this model. Timeouts indicate a
time longer than 10 minutes.

different from those in previous work on verifying temporal prop-

erties of unbounded probabilistic systems [27, 28]. Thus, even a

comparison to the verification of a temporal property is not possible

as the models we use are distinct.

We note also that if we fix a number of agents then our tool will

exhibit similar timings to the PRISM-games extension it uses as its

underlying model checker [25], since it will be calling the subrou-

tines there to verify the concrete system. Since PRISM-games has

already been benchmarked on many case studies [26], describing

such benchmarking results here would not be of interest.

6 CONCLUSIONS
We have presented a method for verifying strategic properties in

multi-agent systems that are probabilistic and unbounded in size.

To the best of our knowledge, no other work addresses this prob-

lem. After introducing a novel semantics for reasoning about such

systems, we gave a decision procedure for the verification problem

based on constructing an abstract model using a counter abstraction

technique. We showed that our decision procedure is sound, and

also noted that it is complete on the variant of our specification

logic describing properties of finite traces. Finally, we implemented

our technique, and used our implementation to verify properties of

a channel jamming scenario.

In future work, we plan to apply the method and tool described

to further scenarios, such as protocols from swarm robotics. We also

plan to explore further extensions to the logic, such as probabilistic

variants of epistemic properties [15]. Finally, we intend to combine

this work with techniques developed to verify fault tolerance of

multi-agents systems [22], in order to verify strategic properties in

systems that may exhibit faults.
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